Anodic bonding is a technique to produce hermetic sealing between silicon/metals and glass insulators without using an intermediate layer. Borosilicate glass with high alkali ion concentration is a major requirement for this process. Different from other bonding techniques, anodic bonding involves heating and applying an electric field to the substrate materials.
Anodic bonding is also called field assisted bonding or electrostatic sealing. A clean wafer surface and atomic contact between the substrates is required for anodic bonding. Bonding takes place when the wafers are placed between the chuck and the temperature is increased to just below the glass transition temperature of glass, followed by applying electric potential of several hundred volts. After reaching a certain temperature, the oxides dissociate and alkali ions are driven into the glass by an electric field resulting in an oxygen-rich layer at the interface of the wafers. Oxygen ions are driven into the silicon surface by the electric field resulting in the formation of silicon dioxide. With specific applied pressure and voltage, the total bond process time is between 5 to 20 minutes.
Visit our booth #B1241 at SEMICON EUROPA 2025 & visit our poster presentation at the APC:
"High Throughput Digital Lithography Development for 3D Device Integration " held by Business Development Manager Dr. Ksenija Varga.
Visit EVG's booth at The International Conference on Wafer Bonding and listen to our talks:
"Impact of Surface Condition on In-Plane Distortion in Si Wafer Bonding: Correlation with Adhesion Energy and Bondwave Propagation Speed" by Technology Development Dr. Christoph Flötgen.
“Advanced IR Laser Debonding on Silicon Wafers for RDL- first FOWLP” by Supervisor Process Technology Peter Urban.
“D2W Bonding of III-V and piezo electrical materials for Heterogeneous Integration” by Team Leader Process Technology Mariana Pires.
“Comprehensive Bond strength optimization of LiTaO3 bonding using ComBond Technology” by Supervisor Process Technology Michael Dornetshumer.
“ComBond Bonding of Diamond and other Materials for Advanced Thermal Management” by Senior Process Technology Engineer Matthias Danner.
and visit the Poster Presentation, where we present following topic:
“Comparative Analysis of Atmospheric and ComBond-Activated TiTi thermos-compression Bonding” by Team Leader Process Technology Thomas Stöttinger.
Contact the EVG experts