Anodic bonding is a technique to produce hermetic sealing between silicon/metals and glass insulators without using an intermediate layer. Borosilicate glass with high alkali ion concentration is a major requirement for this process. Different from other bonding techniques, anodic bonding involves heating and applying an electric field to the substrate materials.
Anodic bonding is also called field assisted bonding or electrostatic sealing. A clean wafer surface and atomic contact between the substrates is required for anodic bonding. Bonding takes place when the wafers are placed between the chuck and the temperature is increased to just below the glass transition temperature of glass, followed by applying electric potential of several hundred volts. After reaching a certain temperature, the oxides dissociate and alkali ions are driven into the glass by an electric field resulting in an oxygen-rich layer at the interface of the wafers. Oxygen ions are driven into the silicon surface by the electric field resulting in the formation of silicon dioxide. With specific applied pressure and voltage, the total bond process time is between 5 to 20 minutes.

Treffen Sie das EVG-Team am Stand #B1241 und besuchen Sie unsere Poster-Präsentation auf der APC:
"High Throughput Digital Lithography Development for 3D Device Integration" von Business Development Manager Dr. Ksenija Varga.

Besuchen Sie unseren Stand auf der Internationalen Wafer Bonding Konferenz und hören Sie sich unsere Talks an:
"Impact of Surface Condition on In-Plane Distortion in Si Wafer Bonding: Correlation with Adhesion Energy and Bondwave Propagation Speed" von Technology Development Dr. Christoph Flötgen.
“Advanced IR Laser Debonding on Silicon Wafers for RDL- first FOWLP” von Supervisor Process Technology Peter Urban.
“D2W Bonding of III-V and piezo electrical materials for Heterogeneous Integration” von Team Leader Process Technology Mariana Pires.
“Comprehensive Bond strength optimization of LiTaO3 bonding using ComBond Technology” von Supervisor Process Technology Michael Dornetshumer.
“ComBond Bonding of Diamond and other Materials for Advanced Thermal Management” von Senior Process Technology Engineer Matthias Danner.
und besuchen Sie die Poster Presentation, wo wir mit folgendem Thema vertreten sind:
“Comparative Analysis of Atmospheric and ComBond-Activated TiTi thermos-compression Bonding” von Team Leader Process Technology Thomas Stöttinger.

Besuchen Sie unseren Stand #20 & hören Sie sich unsere Vorträge an:
"The Critical Role of Wafer Bonding in Next-Generation Interconnect Scaling" gehalten von Team Leader Business Development Dr. Bernd Dielacher und
“Innovation and Efficiency in 3D Packaging Enabled by Optimized Integration Processes” von Business Development Manager Dr. Ksenija Varga.
Kontaktieren Sie die EVG-Experten