EV GROUP® | Technologies

Solutions for
Bio- & Medical Technology
Today’s miniaturized biotechnology devices can be found in numerous applications, including fields related to human health as well as environmental and industrial sciences. To successfully commercialize such products in a fast growing market with stringent requirements and high regulatory hurdles, precise and cost-effective micro-structuring technologies are essential.

Nanoimprint lithography (NIL) has evolved from a niche technology to a powerful high-volume manufacturing method that is able to serve today’s needs and overcome the challenges of increasing complexity of microfluidic devices in particular, and biotechnology devices in general. NIL can be distinguished between three types of imprint technologies: hot-embossing or thermal NIL, UV-NIL, and micro-contact printing (µ-CP).

In addition to structuring technologies, sealing is a central process. Thus, bonding of different device layers, capping layers or interconnection layers is a key process that can be implemented together with NIL in an efficient large-area batch process. A variety of different bonding options are available, ranging from advanced room temperature bonding techniques for bio-material encapsulation to plasma activated bonding as well as high-quality hermetic sealing and vacuum encapsulation.

EVG’s NIL equipment offers a well-suited solution, where complexity in design does not necessarily add manufacturing cost. Together with bonding processes that are well aligned with these structuring techniques, limitations of current fabrication methods can be overcome to enable the production of next-generation biotechnology devices.
UV Lithography

Direct structuring of microfluidics
Master fabrication for UV-NIL or Hot Embossing
- State-of-the-art thick and thin resist processing
- Easy design change for R&D and HVM
- Multilayer processing for 3D devices
- SU-8 mastering

UV Nanoimprint Lithography (UV-NIL)

Nanostructured surfaces with highest resolution
- Volume-proven imprinting technology with superior replication fidelity with resolution down to 20 nm
- Proprietary SmartNIL® technology
- Room-temperature process
- Imprinted UV-NIL resist directly suitable as functional layer
- Highly uniform residual layers for optimum pattern transfer by etching

Hot Embossing

Replication of microfluidic patterns into polymer materials
- Simultaneous replication of micro- and nanostructures
- Imprinting into bulk polymer or spin-on thermoplastics
- Low residual stress
- High replication accuracy down to 50 nm
- High aspect ratio features

μ-contact Printing

Transfer of bio-molecules onto substrates in a distinct pattern
- Local modification of surface chemistry
- Precise placement of capture molecules for bio-sensing applications
- Applicable on all common surfaces
- Micro- and nanometer resolution

Adhesive Bonding

Biocompatible device sealing with adhesives
- Room-temperature encapsulation of biological materials
- Ultra-thin adhesive transfer technology with excellent uniformity over large areas
- Compatible with a wide range of substrate materials
- Hybrid microfluidic integration

Interlayer-free Bonding

Homogenous device sealing
- High pressure and temperature uniformity
- High-quality hermetic sealing and vacuum encapsulation
- Plasma-activated bonding
- Precise bond alignment capabilities
Key Features

Nanoimprint Lithography
- Hot Embossing, UV-NIL, Micro Contact Printing

- Innovative lithography for bio- and medical applications
- Market-leading nanoimprint lithography equipment
- Robust and field-proven proprietary SmartNIL® technology

Device Sealing
- Thermal, Plasma-activated, Adhesive, Anodic, Metal

- Bio-compatible bonding on industry-leading wafer processing equipment
- Room-temperature bonding technologies for bio-material encapsulation
- Processing of all common substrates, including polymers, glass and silicon

High-Throughput Parallel Processing

- Fully automated equipment solutions up to 300 mm
- Flexible low-cost production technology
- Large area processing

Support and Development

- Customer demonstrations
- Process development
- Small-volume pilot-line production
- Joint R&D with partners
- Funded projects

- World class cleanroom infrastructure
- State-of-the-art equipment
- Process know-how
- Applications know-how
- Technology experts

[Images: lithography process diagrams, laboratory equipment, cleanroom environments]
Process Results

EVG’s NIL solutions are able to produce a multitude of different sized and shaped patterns with resolution down to 20 nm. A variety of different bonding options are also available, ranging from advanced room temperature bonding techniques to plasma activated bonding as well as high-quality hermetic sealing and vacuum encapsulation.

UV Lithography

> SEM Image of 1 µm pillars in SU-8 resist
> Source: EVG

> SEM image of microfluidic network in SU-8 resist
> Source: EVG

> Master with microfluidic structures for hot embossing
> Source: EVG

UV Nanoimprint Lithography (UV-NIL)

> L/S grating with optimized residual layer with approximately 10 nm thickness
> Source: EVG

> Nanostructured cell culture well plates
> Source: EU Project R2R Biofluidics

> Photonic bandgap sensor grating
> Source: EVG (EU Project Saphely)

Hot Embossing

> Microfluidic chips replicated in PMMA by hot embossing
> Source: EVG

> 10 µm pillar arrays with high aspect ratio (7:1)
> Courtesy of National Research Council Canada

> SEM image of hot embossed microfluidic channels
> Source: EVG

µ-contact Printing

> Biological sample interacting with directly imprinted functional array
> Courtesy of FH Wels

Adhesive Bonding

> Cross section of adhesive interface after adhesive transfer bonding
> Source: EVG

Interlayer-free Bonding

> Cross section of bonded PMMA substrates
> Courtesy of Waseda University
The information contained in this document is provided “as is” and without warranty of any kind, express or implied. Any express or implied warranties including, but not limited to, any implied warranty of merchantability, fitness for a particular purpose, and patent infringement or other violation of any intellectual property rights are hereby expressly disclaimed. EVG makes no representation that the use or implementation of the information contained in this document will not infringe or violate any copyright, patent, trademark, trade secret or other right. In no event shall EVG be liable for any claim, damages or other liability, including any general, special, indirect, incidental, or consequential damages, whether in an action of contract, tort infringement, misappropriation or otherwise, arising from, out of or relating to the use or inability to use the information. Acceptance and/or any use of the information contained in this document shall be deemed consent to, and acceptance of, this disclaimer. Data, design and specifications may not simultaneously apply; or may depend on individual equipment configuration, process conditions and materials and vary accordingly. EVG reserves the right to change data, design and specifications without prior notice. All logos, company names and acronyms or any combinations thereof, including, but not limited to, EV Group®, EVG® and the Triple i logo, equipment and technology names and acronyms such as GEMINI®, HERCULES®, BONDSCALE®, SmartView®, SmartNIL® and many others, as well as website addresses, are registered trademarks and/or the property of EV Group. For a complete list of EVG trademarks visit www.EVGroup.com/Imprint. Other product and company names may be trademarks of their respective owners.