The ComBond technology adds a new milestone to EVG’s unique portfolio of wafer bonding equipment and technology in response to market needs for more sophisticated integration processes. The application areas range from advanced engineered substrates to high-end MEMS packaging, from “beyond CMOS” devices to stacked solar cells, and from high-performance logic to power devices.
The ComBond platform combines several technology breakthroughs to enable the formation of bond interfaces between heterogeneous materials at room temperature while achieving excellent bonding strength and electrical conductivity. Furthermore, ComBond enables the encapsulation of MEMS devices in high vacuum. Its capabilities include optical alignment with wafer clamping, programmable dehydration bake and getter activation, bonding in a bond chamber, and wafer handling done under high vacuum.
EVG’s breakthrough wafer activation technology and high-vacuum handling and processing allows the formation of covalent bonds at room or low temperature for the fabrication of engineered substrates and device structures. ComBond facilitates the bonding of heterogeneous materials with different lattice constant and coefficient of thermal expansion (CTE) as well as the formation of electrically conductive bond interfaces by its unique oxide-removal process. The ComBond high-vacuum technology also enables low-temperature bonding of metals, such as aluminum, that re-oxidize very fast in ambient environments. Void-free and particle-free bond interfaces and excellent bond strength can be achieved for all material combinations.
For vacuum encapsulation using aligned wafer bonding, the ComBond system advances its bonding capability through the addition of programmable dehydration bake and getter activation modules and the optical alignment module with wafer clamping. The high-vacuum handling and processing platform addresses rising demands for lower vacuum levels in leading-edge MEMS and other applications.
Market applications demanding room-temperature bonding of substrates with very different material properties include advanced engineered substrates, power devices, stacked solar cells and MEMS devices. The novel oxide-free bonding technique is particularly beneficial in silicon photonics, high-vacuum MEMS packaging, and compound semiconductor and other advanced engineered substrates for “beyond CMOS” applications such as high-mobility transistors, high-performance/low-power logic and radio frequency (RF) devices.
Visit our booth #B1241 at SEMICON EUROPA 2025 & visit our poster presentation at the APC:
"High Throughput Digital Lithography Development for 3D Device Integration " held by Business Development Manager Dr. Ksenija Varga.
Visit EVG's booth at The International Conference on Wafer Bonding and listen to our talks:
"Impact of Surface Condition on In-Plane Distortion in Si Wafer Bonding: Correlation with Adhesion Energy and Bondwave Propagation Speed" by Technology Development Dr. Christoph Flötgen.
“Advanced IR Laser Debonding on Silicon Wafers for RDL- first FOWLP” by Supervisor Process Technology Peter Urban.
“D2W Bonding of III-V and piezo electrical materials for Heterogeneous Integration” by Team Leader Process Technology Mariana Pires.
“Comprehensive Bond strength optimization of LiTaO3 bonding using ComBond Technology” by Supervisor Process Technology Michael Dornetshumer.
“ComBond Bonding of Diamond and other Materials for Advanced Thermal Management” by Senior Process Technology Engineer Matthias Danner.
and visit the Poster Presentation, where we present following topic:
“Comparative Analysis of Atmospheric and ComBond-Activated TiTi thermos-compression Bonding” by Team Leader Process Technology Thomas Stöttinger.
Contact the EVG experts