EVG®501 Wafer Bonding System

Configurable for all wafer bonding processes such as anodic, thermo compression, fusion bonding, or LowTemp™ plasma bonding.

 

Brochures
Please click the picture to download the brochure in PDF format


EVG500 Series Short Brochure.pdf




Technical Papers
Please click the titles to download the full papers in PDF format



Aligned fusion wafer bonding for wafer-level packaging and 3D integration
Abstract: Wafer-level packaging via wafer bonding allows smaller and thinner packages, improves the yield due to higher cleanliness, enables the encapsulation of vacuum or process gas and finally reduces the packaging costs significantly. High precision alignment of device wafer to cap wafer allows real chip size packaging as the required width of the sealing rings is in the low micron range...



Adhesive wafer bonding for MEMS applications
Abstract: Low temperature wafer bonding is a powerful technique for MEMS/MOEMS devices fabrication and packaging. Among the low temperature processes adhesive bonding focuses a high technological interest. Adhesive wafer bonding is a bonding approach using an intermediate layer for bonding (e.g. glass, polymers, resists, polyimides). The main advantages of this method are: surface planarization, encapsulation of structures on the wafer surface, particle compensation and decrease of annealing temperature after bonding....



Adhesive wafer bonding for wafer-level fabrication of microring resonators
Abstract: Adhesive wafer bonding for wafer-level fabrication of microring resonators Abstract: GaInAsP/InP passive microring resonator devices were successfully fabricated using a vertical integration concept with GaInAsP/InP-on-GaAs wafer bonding. BCB adhesive bonding has been identified as the preferred wafer bonding process. This paper reports results on the development of the wafer bonding and on the microring fabrication.



Adhesive Wafer Bonding With SU-8 Intermediate Layers For Micro-Fluidic Applications
Abstract: Recently adhesive wafer bonding using SU-8 has gained a lot of interest for micro-fluidic devices e.g. lab-on-chip applications. Due to its specific properties as well as the capability to pattern thin and thick layers accurately, SU-8 is an ideal candidate for micro-fluidic components like channels, reservoirs and valves, but also for micro-optical components...



Advanced anodic bonding processes for MEMS applications
Abstract: Anodic bonding is a powerful technique used in MEMS manufacturing. This process is applied mainly for building three-dimensional structures for microfluidic applications or for wafer level packaging. Process conditions will be evaluated in present paper. An experimental solution for bonding three wafers in one single process step (“triple-stack bonding”) will be introduced...



Microring resonators fabrication by BCB adhesive wafer bonding
Abstract: Microring resonator devices are attractive for Wavelength Division Multiplexing (WDM) applications because of their inherent spectral characteristics. GaInAsP/InP microring resonator devices were fabricated using a vertical integration concept based on GaInAsP/InP-on-GaAs wafer-to-wafer bonding...



New Challenges for 300 mm Si Technology - 3D Interconnects at Wafer Scale by Aligned Wafer Bonding
Abstract: A new alignment technique is proposed for wafer level 3D interconnects fabrication: the SmartView®. This original procedure is using alignment keys located in the bonding interface and enables an alignment precision of 1 µm...



Trends in aligned wafer bonding for MEMS and IC wafer-level packaging and 3D interconnect technologies
Abstract: The continuous reduction of IC feature size, the increased demand for higher speed, the lower power consumption and the simultaneous increase of I/O leads to wafer-level packaging through aligned wafer bonding as an interesting solution for IC and MEMS packaging. Portable consumer products such as wireless handsets and upcoming high-performance computing devices drive the semiconductor industry to develop advanced packaging solutions with reduced thickness and area dimensions...



Triple-stack anodic bonding for MEMS applications
Abstract: Wafer bonding techniques are key technologies for MEMS devices fabrication. Anodic bonding is a very mature technique used for wafers stacking or wafer level packaging. This paper reports results on a process allowing Glass - Si - Glass and Si - Glass - Si triple-stacks bonding in a single process step...



Wafer-scale BCB resist-processing technologies for high density integration and electronic packaging
Abstract: IC performance is drastically limited by line-to-line capacity coupling and RC interconnect delay times resulted from the continuous increase in integration densities with 0.10µm line and space width approaches, as well from increased signal frequencies. The new achievements in terms of circuit lines shrinkage emphasize the need for the introduction of Cu and low-k dielectric materials...  

III-V wafer bonding technology for wafer-level fabrication of GaInAsP/InP microring resonators
Abstract: GaInAsP/InP passive microring resonator devices were successfully fabricated using a vertical integration conecpt with GaInAsP/InP-on-GaAs wafer bonding. BCB adhesive bonding has been identified as the preferred wafer bonding process. This paper reports results on the development of the wafer bonding and on the microring fabrication.