EVG®850DB Automated Debonding System

For debonding, cleaning and unloading of thin wafers.

 

Brochures
Please click the picture to download the brochure in PDF format


EVG_TempBonding_Debonding_ShortBrochure.pdf



Technical Papers
Please click the titles to download the full papers in PDF format



Integration of a Temporary Carrier in a TSV Process Flow
Abstract: Three-dimensional (3-D) wafer stacking technologies offer new possibilities in terms of device architecture and miniaturization [1-3]. To stack wafers, reliable throughsilicon vias (TSVs) and interconnections must be processed into ultrathin wafers, and such processing is made possible by new methods for wafer handling...
 

Advances in processing of compound semiconductor substrates
Abstract: Compound semiconductor materials such as GaAs and InP have distinct advantages over the more traditional silicon, chief of which is the greater electron mobility within the substrate, allowing greater use in low-noise, high gain applications. However, the advantages of these materials come with corresponding disadvantages...



High temperature–resistant spin-on adhesive for temporary wafer mounting using an automated high-throughput tooling solution
Abstract: Myriad structures for stacking chips, power devices, smart cards, and thin substrates for processors have one thing in common: thin silicon. Wafer thinning will soon be an essential process step for most of the devices fabricated and packaged henceforth. The key driving forces for thinned wafers are improved heat dissipation, three-dimensional stacking, reduced electrical resistance, and substrate flexibility...



High-performance temporary adhesives for wafer bonding applications
Abstract: This paper reviews a high temperature–resistant spin-on adhesive platform and the equipment solution used to apply the adhesive to a wafer, temporarily bond the wafer to a carrier, and debond the thinned wafer in an automated high-throughput method. The focus of this paper is on the physical and chemical properties of the spin-on adhesive material that enable an automated process...



Production proven temporary bonding and de-bonding equipment and technology

Abstract: The utilization of compound semiconductor materials has been steadily increasing, especially in the optoelectronics industry. Application of these materials typically requires the substrates to be greatly thinned below 100µm prior to packaging. Due to the fragility of these substrate materials, some form of support is required for handling throughout the various process steps...



Reversible wafer bonding for reliable compound semiconductor processing
Abstract: Reversible wafer bonding is a process enabling reliable compound semiconductor wafer handling for multi-step processes including photolithography, thinning, etching or coating. Two processes using wax and dry film adhesives are presented in this paper.



Si/GaAs heterostructures fabricated by direct wafer bonding
Abstract: Si/GaAs heterostructures were obtained by a low temperature direct wafer bonding (DWB) method which uses spin-on glass (SOG) intermediate layers. The use of intermediate SOG layers allows the fabrication of Si/GaAs heterostructures at processing temperatures lower than 200°C. The achieved bonding energy permits thinning down to a few microns of Si and GaAs wafers, respectively, using grinding procedures followed by chemical mechanical polishing (CMP)...



Temporary and permanent wafer bonding for reliable backside processing of compound semiconductor wafers
Abstract: This paper presents two wafer bonding methods used for III-V compound semiconductors processing. First method describes the use of aligned reversible wafer bonding of a device wafer to a rigid carrier wafer by wax intermediate layer for optimum handling. After backside thinning and processing the device wafer is easily debonded. This procedure enables a secure handling of brittle wafers...